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The WaTson-wave function for the Be ground state is used to check the necessary condi- 
tions - derived previously - for the validity of the antisymmetrized product of strongly 
orthogonal geminal (APSG) approximation. The agreement between the actual properties of 
the numerical 1 ~t and 2 ~a order density matrices and those predicted from the APSG scheme 
is satisfactory, whereas the predictions made in the framework of the antisymmetrized 
product of identical geminals (APIG) scheme are not at all realized. "Correlation adapted" 
orbitals and "generating geminMs" are "extracted" from the given numerical wave function. 
The former are compared with the ED~IS~O~-R~SD~ERS localized orbitMs, the latter with 
the Be § wave functions. 

An WATSONS Wellenfunktion fiir den Be Grtmdzustand warden dig notwendigen Bedin- 
gungen f/ir die Giiltigkeit der APSG-NSherung getestet, die fraher abgeleitet worden waren 
(APSG = Antisymmetrisiertes Produkt stark orthogonaler Geminale). Die ~bereinstimmung 
zwisehen dam ~atsgchlichen Verhalten der numerisehen Dichtematrizen 1. und 2. Ordnung 
und demjenigen, das veto Standpunkt der APSG-NSherung vorausgesagt wird, ist zufrieden- 
stellend, t~berhaupt nicht erfiiilt warden allerdings die Voraussagen der APIG-NKherung 
(APIG = Antisymmetrisiertes Produkt identischer Geminale). Die ,,korrelationsadaptierten 
0rbitale" sowie die ,,erzeugenden Geminale" warden, ausgehend yon der gegebenen Funktion, 
konstruiert, understere mit den ED~ISTO~-t~V~DEXBERGschen lokalisierten Orbitalen ver- 
gliehen, letztere mit der Wellenfunktion des Be ++. 

On se sert de la fonction num6rique de WATSON pour l'6tat fondamental de l'atome de 
Beryllium pour examiner les conditions n6cessaires d6riv6es ant6rieurement, qui doivent 4tre 
satisfaites si l'approximation APSG est valable. Dans le cadre de cctte approximation la 
fonction d'onde peut gtre repr6sent6e eomme produit antisymm6trique de g6minMes fortement 
orghogonales. Les pr6dictions faites & partir de ce modgle etles propri6t6s des matrices densit6 
num6riques sent en ben accord. I1 n'en est pas autant pour l'approximation APIG oh l'on 
choisit les g6minales identiques plut6t que fortement orthogonales. On ((extrait ~> les ,orbitales 
adapt6es & la eorr61ation, aussi bien qua les (~g6minales g6n6ratrices ~> de la fonetion num6rique. 
Les premigres sent eompar6es aux (<orbitales loealis6es ~> d'EDYilSTON et I~gEDENBEXG, Its 
secondes & la fonetion d'onde de Be++. 

Introduction 

The method  [16] of describing a q u a n t u m  mechanical  state of a 2n-electron 
system approximat ive ly  by  an Ant i symmet r ized  Product  of Strongly orthogonal  
Geminals (APSG) has recent ly been formulated in  terms of na tu ra l  orbitals and  
na tu ra l  geminals [19]. Several theorems have been obta ined which are necessari ly 
fulfilled by  the first and  second order densi ty  matrices of a given state provided 
tha t  the APSG approximat ion  is an  exact  description and which are supposed to  
be almost  fulfilled ff the APSG scheme is a good approximat ion.  
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I t  is therefore straightforward to test. the validity of the APSG approximation 
by examinating in how far t st and 2 nd order density matrices obtained from good 
numerical wave functions have the properties which one would expect f f the  APSG 
approximation is valid. Unfortunately the only state of a 2n ( >  2)-electron 
system for which sufficiently accurate wave functions are available is the Beryllium 
ground state [30, 31]. From the wave function computed by WATSON [30], 
FOGEL [12] has calculated the reduced density matrices and the natural orbitals 
and geminals for this state*. The first order density matrix of the same state has 
been calculated before from the somewhat simpler BoYs wave function [6] by 
SHULL and Lr~DERBERG [28]. These authors also calculated the natural expansion 
of the wave function. 

In this paper both those theorems which have to be valid irrespective of any 
approximation [3, 9, 18, 21, 22] and those which are necessary conditions for the 
validity of the APSG approximation [19] will be checked for the numerical 
Beground state density matrices. The same test can be applied to any other 
c a s e .  

A ~ L ~  and SHm~L [1] have pointed out that  in omitting those terms in the 
WAwso~ function which violate the strong orthogonality condition one can con- 
struct an APSG wave function which has an overlap of .99889 with the WATso~ 
function. McWw~xu and SUTCLIF~E [23] have published a variation calculation 
for the Be-ground state using an APSG type wave function. Although their trial 
geminals were somewhat too simple, they concluded that  the APSG scheme should 
be a rather good approximation for the Be-ground state. The usefulness of the 
APSG approximation is hence not in doubt, a more precise analysis of both its 
merits and its limitations is however needed. 

The APSG typ wave function belongs to a special class of wave functions, 
which are Antisymmetrized Products of Geminals (APG), but  with the additional 
rest:riction of Strong orthogonality. There is evidence [23] that  the appreciable 
increase in mathematical complication on relaxing the strong orthogonality con- 
straint is not worth the very small gain of accuracy of the wave function and the 
energy. Another special class of APG functions has recently received interest in 
quantum chemistry, namely the Antisymmetrized Products of Identical Geminals 
(APIG). These have sometimes been called (N-projected) BCS-funetions, because 
of their relation to the B~DEEN-COOPE~-ScmuE~FE~ theory [2, 5, 10, 24] of super- 
conductivity**. The reduced-density-matrix formulation for functions of this type 
has been given by COLEM~ [10]. B~ATO~ [7] has suggested that  APIG wave func- 
tions (they contain the independent model as a special ease, so do ~ by the way - -  
the APSG functions) might also be useful for atomic and molecular calculations, 
e.g. for the Be-ground state. We shall therefore test as well if the W• function 
has the properges which are necessary conditions for the fulfilment of the APIG 
approximation. 

Investigations of this type are also useful ff one wants to eliminate the wave 
function from quantum mechanics and to work with density matrices only. 

* The author is indebted to Prof. P. O. L6WDI~ for making him Dr. FOGEL'S thesis 
available. 

** B~ATO~ used the name "fonction biorbitale" and COLE~A~ recently proposed "anti- 
symmetrized geminal power" or AGP, which must not be mixed up with APG as used here. 
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1. General properties of the reduced density matrices 

General properties of the reduced density matrices have been derived by 
various authors [3, 4, 8, 9, 18, 21, 22]. I f  r (J, . . .  n) is a wave function of an 
n-electron system, than the i st order density matrix y (1, l ~) and the 2 nd order 
density matrix T' (i, 2; t r, 2 ~) are defined by 

(i, 1') = n fq) (l, 2 . . .  ~ ) 4 "  (i', 2 . . .  n)dv2.. ,  dv~ (~) 

. ( 2 )  

The natural spin orbitals (NSO) Zi (]) and their occupation nmnbers ut as well as 
the natural spin geminals (NSG) ~fi (l, 2) and their occupation numbers V'~ are the 
eigenfunctions and eigenvalues of the integral operators defined by the I st and 
2 nd order density matrices respectively. 

7 (i, I') Z~ (i') d~, = r~ Z~ (I) (3) 

r (~, 2; i', 2') ~ (I', 2') d~, d,T~, =/~ ~ (I, 2) . (4) 

We are especially interested in symmetry properties, degeneracies and bounds 
of the eigenvalues. If we limit ourselves to the aS-state of a 4-electron atom, we find: 

1. Both the I~SO and the NSG are pure spin state functions. They can be 
labelled with quantum numbers 8 and ms [3, 22]. 

2. The eigenvalues vf of the first order density matrix are evenly degenerate. 
To any pair of equal eigenvalues corresponds ~he same space orbital, multiplied 
by ~- and by fl-spin [3, 22]. 

3. The trace of the i st order density matrix is (in LSwD12~ normalization [21]) 
equal to the number of electrons, i.e. 4. Any eigenvalue v, is bounded above by i.  

4. The trace of the 2 nd order density matrix is (again in L6WDIN normalization) 

5. The second order density matrix can be decomposed in the following way 
into space and spin factors [18] 

r ( i ,  2; i ' ,  2') = r~ (r~ r~ [ r~ r~) 0~ (1, 2) 0* (t', 2') + (5) 
+1  

+ r ,  (~ ~ [~'~ ~',) Z 0[ (~, 2). 0~* (~', 2') 
1=--1 

where 0~, t are the normalized two-particle spin functions 
1 

o~ (~, 2) = 2-  ~{~ (~) ~ (2) - fl (1) ~ (2)} 
0t ~ = fi (J)/3 (2) 0~ ---- ~ (1) ~ (2) (6) 

1 

0~ = 2-  ~ { ~ ( 1 ) ~  (2) + ~  (~) ~ (2)}. 

The trace of the singlet density matrix/ '~ is equal to 3, the trace of the triplet 
density matrix f ' t  is equal to 1. Any eigenvalue of F corresponding to a hTSG of 
triplet type has degeneracy divisible by 3. 

6. Botl~ ~qSG and ~SO are adapted to the point symmetry group, i.e. ~he 
threedimensional rotation group. They can therefore be labelled with angular 
quantum numbers 1 and m~. Those NSG (or ~qSO) which have the same l, but 
different m~ have the same occupation number, which has consequently degeneracy 
divisible by (2 1 + 1). 
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Note that in order to derive theorems ~[ and 2 it is necessary to assume that for the 4- 
electron state Ms = 0, for theorem 5 that S = 0 and for theorem 6 that L = 0. Hence they are, 
contrary to theorems 3 and 4 not generally valid for other than 1S-states. 

2. Special properties of the reduced density matrices in the APSG scheme 
I f  the wave function of the 4-electron system can be written as an antisym- 

metrized product of strongly orthogonal normalized two-electron functions (ge- 
minals) [14] 

~5 = d F 1  (i, 2) F2 (3, 4) (7) 

f ~,1 (i,  2) ~2 (l ' ,  2) d ~  = 0 (8) 

then its reduced density matrices satisfy the following theorems [19] in addition 
to those outlined in section i .  

i.  The natural spin orbitals can be classified into two sets, to be labelled with 
superscripts K and L referring to K and L-shell respectively, such tha t  

= = 2 ( 9 )  

and tha t  no natural spin orbital belongs to both sets. 
2. The NSO of the total  wave function ~ are automatically natural spin orbitals 

of the generating spin geminals F1 and F2, and of all the natural  spin geminals. 
3. Exact ly  two natural  spin geminals are of correlated type, i.e. when expanded 

in terms of their natural spin orbitals they have the form 

(l ,  2) = ~ c~ [Z~i-~ (i) z2~ (2) - Z2~ (l) Z~-~ (2)] (10) 

whereas all the other NSG are simple antisymmetric products of natural spin 
orbitals*. We call them "non-correlated". 

1 
w (l, 2) = 2 2 [z~ (i) zr (2) - z~ (l) z~ (2)3. ( l i )  

The two correlated NSG have the occupation numbers equal to one, the occupation 
numbers of the other I~SG are bounded above by one. 

4. Any triplet type natural spin geminal has the same occupation number as a 
singlet type geminal. The corresponding eigenvalue has hence degeneracy divisible 
b y 3 + l = 4 .  

5. The two correlated natural  spin geminals are (except for a unitary trans- 
formation, since they belong to the same eigenvalue) equal to the (strongly ortho- 
gonal) generating spin geminals. 

6. The occupation numbers #ir of the non-correlated NSG are expressible as 
products of those of the I~SO, belonging to di#erent sets as defined in i. 

(~2) 
Note tha t  in this scheme the eigenvalues of the 2 aa order density matr ix  are 

expressible in terms of those of the i st order one. The fulfilment of this s tatement 
can be most easily tested. 

3. Special properties oi the reduced density matrices in the APIG approximation 
We are here especially interested in relations between the eigenvalues of the 

ist and 2 na order density matrices. These are less easily obtained than for the APSG 

* Or, if they belong to a degenerate eigenvalue, possibly linear combinations of "degene- 
rate" antisymmetric products. 
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approximation. Since we shall see tha t  the relations predicted from the A P I G  
approximation are not at  all realized by  the actual density matrices of the Beryl- 
lium ground state, it is sufficient to derive these relations approximatively. 

I f  a four electron wave function is expressible as an antisymmetric product of 
two identical geminals, the following theorems ought to hold. The proofs are given 
in the appendix. As to a formal t reatment  of this scheme see ref. 10. 

1. There is no classification of the natural  spin orbitals into two sets. Any of 
them belongs to the inner as well as to the outer pair. 

2. The natural  spin orbitals of the total  wave function are also natural  spin 
orbitals of the generating gemina] and of all the natural  spin geminals. 

3. There are correlated NSG, i.e. they are of the form (10) and uncorrelated 
ones, i.e. they are simple antisymmetrized products of NSO (11). The sum of the 
occupation numbers of the correlated ones is equal to 2, of the uncorrelated ones 
to 4, the total  sum being 6. The occupation number of any of the correlated NSG 
is bounded above by  2, of any  uneorrelated one by 1. I f  one eigenvalue approaches 
the bound 2, all the other eigenvalues tend simultaneously to zero. 

4. The occupation numbers of the correlated NSG may  all be different, those 
of the non-correlated NSG have degeneracy divisible by 4. 

5. The generating geminal is, in general, not equal to any of the natural spin 
geminals. 

6. The eigenvalues/~lj of the non-correlated NSG arc related to the occupation 
numbers of the natural  spin orbitals v~ approximatively by the following relation 

#ij ~ a �9 ~ v3' (13) 

where a = ~ if both v~ << 1 and vj << t 

a = �89 if r~ ~ 1, vj << I or vice versa 

a =  i f f v / ~  t, v]~-- 1. 

This theorem is essentially different from the corresponding one in the APSG 
scheme. Note tha t  here all possible products a �9 v~ v~ should appear as/tij. 

4. Analysis of the Beryllium ground state 

The highest eigenvalues of the I st and 2 na order density matrices of the Be- 
ground state are collected in Tab. i and 2, together with their degeneracy and 
their label. The twofold degeneracy as stated by theorem 2 of section i obtains, 
so does theorem 6. 

I f  one assumes tha t  the inner pair of the Be-atom resembles to the Be++-ion 
in its ground state [17], at least as much tha t  the corresponding eigenvalues of the 
respective density matrices are of the same order of magnitude, then one can make 
a first guess which of the orbitals of the Be-atom probably belong to the inner and 
which to the outer shell. The division of the v~ into two sets is then achieved by 
trying to satisfy theorem I of section 2. In  fact one finds 

X~K = 1.99997 ZrL = 2.00002 

for the WATSON wave function and 

ZU K = 2.00004 XyL = i.99996 

for the BoYs wave function. 

Theoret. chim. k c t a  (Berl.), Vol. 3 19  
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Table 1. The first eigenvalues of the t ~t order density matrix 

Nr. degeneracy shell label v (WiTso~) v (BoYs) v (Be 2+) 

1~2 
3, 4 

5 - 10 
11, 12 
13 - 18 
19 - 28 
29 - 30 
31 - 32 
33 - 42 
43 - 48 
49 - 50 
51 - 60 

Z 

2 
2 
6 
2 
6 

10 
2 
2 

10 
6 
2 

10 

K 
L 
L 
K 
K 
L 
K 
K 
K 
K 
K 
K 

t_8 

2s 
2p 
3s 
3p 
3d 
4s 
5s 
4d 
4p 
6s 
5d 

.998306 

.918574 

.027034 

.000721 

.000281 

.000066 

.000034 

.000009 

.000008 

.000008 

.000007 

.000001 

3.99999 

.998877 

.912102 

.029299 

.000571 

.000182 

.99838 

.000633 

.000297 

.000009 

.000009 

.000007 

3.99999 1.99996 

This division into two sets is checked by  forming the possible products  of the 
v~ and  comparing them with the  eigenvalues of the 2 nd order densi ty  mat r ix  

(Tab. 2). T h e  agreement  between the actual  eigenvalues and  those predicted by  
the APSG approximat ion  is excellent, and  only those products  are found which 
are in agreement  with theorem 6 of section 2. 

Tha t  theorems 5 and  6 of section J are fulfilled, is no t  at  all trivial.  W h e n  
YOGEL did his calculations no general theorems on the symmet ry  properties of 
na tu ra l  spin geminals were known,  and  he was surprised to find the NSG symmet ry  
adapted and pure spin state functions.  According to theorem 5 of section I the 
NSG 4 -  6 mus t  have the same occupation numbers .  The actual  values are 
.917100, .916971, .916971. The small differences are a measure of the accuracy of 
the whole calculation; in Tab.  2 the mean  value .9i70I  is given, it  is, however, 
equal to the occupation n u m b e r  of geminal  3. This coincidence is not  expected for 
general wave functions,  bu t  for those of APSG-type  (theorem 4 of section 2). 

We come back later to theorems 3 and  5 of section 2 and  state t ha t  so far the 
prediction made for the APSG scheme are well fulfilled. On the other hand  the 
theorems which should be expected if the state could be described by  an A P I G  
wave funct ion are no t  a t  all verified. 

Table 2. The ]irst eigenvalues o/the 2 .~ order density matrix 

:Nr. 

1 
2 
3 

4 - 6  
7 - 9  

t0 - 18 
19 

20 - 22 
23 - 25 
26 - 34 
35 - 39 
40 - 54 

degeneracy 

1 
1 
1 
3 
3 
9 
1 
3 
3 
9 
5 

1 5  

label 

iS 
iS 
iS 
8S 
ip  
3p 
iS 
3S 
ip  
3p 
iD 
~D 

eigenvalue 

t.00085 
.99893 
.91701 
.91700 
.02700 
.02700 
.00069 
.00069 
.00026 
.00026 
.000065 
.000065 

assignmentby APSG 

generating 

Is x 2s 

ls x 2p 

2s x 3s 

2s x 3p 

is x 3d 

predicted by APSG 

1.00000 

.91702 

.02699 

.00066 

.00026 

.000066 
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This is clearly seen ff we compare the eigenvalues of the second order density 
matrices calculated from those of the fl by use of eq. (13) with the actual ones. 
Instead of t2 NSG with occupation number ~ .027 as predicted from the APSG 
type wave function we should e.g. expect 24 NSG with occupation numbers ~ .013. 

The only fact which is better predicted from the APIG scheme is tha t  the 
occupation numbers of the first two NSG may  be different and are not bounded 
by  one. I t  is a serious drawback of the APSG approximation in tha t  it canno~ 
account for a geminal occupation number  bigger than one, which evidently occurs, 
although the deviation from unity is rather small. 

5. The correlation adapted orbitals 

I t  has been recognized quite early tha t  for two electron systems the first 
r, atural orbitals are very close to the HA~T~E-FocK-orbitals [29]. The question 
whether or not the two types of orbitals should be identical can now be regarded 
as settled in the sense tha t  they are essentially different [16, 25]. That  they are 
not very different is demonstrated by the fact tha t  for atoms their l/Z-expansions 
coincide up to the i /Z  te rm and their expectation values with respect to the 
Hamiltonian even up to the l/Z3-term [25]. 

For closed-shell states with more than two electrons one finds essentially the 
same behaviour [13, 20]. The corresponding theorem cannot, however, be quoted 
in the simple form that  the "strongly occupied" natural  orbitals i.e. those which have 
occupation numbers ~ i coincide with the H~T~E-FOC~:  orbitals up to linear 
terms in a perturbation parameter.  By It~T~J~E-FoeK-orbitals we mean in general 
those solutions of the HARTI~EE-FOOK equations which diagonalize the HARTREE- 
FOCK operator, although any orthogonal linear combinations of them satisfy the 
tIARTREE-I~ocK equations as well. The integro-differential equations satisfied by 
the strongly occupied natural  orbitals - -  which differ from the I-IARTREE-FocK 
equations by a small correlation potential [16, 17, 19] are no longer invariant with 
respect to unitary transformations. The presence of the (non-local) correlation 
potential removes (at least partially) the arbitrariness in the choice of the I-IARTREE- 
FOCK orbitals and allows us to define correlation adapted orbitals which are linear 
combinations of the canonical tIn_~TREE-FoeK orbitals. These correlation adapted 
orbitals are then slightly modified by  the correlation potential to yield the strongly 
occupied natural  orbitals. 

The WATSON wave function has been built up from the I-IARTREE-FocK WaVe 

function and "excited configurations". Singly excited configurations were not 
incorporated since they do not much effect the energy, although it is not justified 
to neglect them completely. Due to the neglect of singly excited configurations the 
strongly occupied natural  orbitals obtained from this particular wave function 
span the same vector space as the HAI~TREE-FocK orbitals. The effect of the 
correlation potential  is hence just to rotate the coordinate system of this space 
and to specify correlation adapted linear combinations of the H~U~T~E~-Focx 
orbitals. I f  we call the canonical HARTREE-~OCK orbitals tSHF and 28HE w e  obtain 
from the WATSON wave function the correlation adapted orbitals 

lSca = 0.999898 �9 ISHF -- 0.014259 �9 28I-IF, 

28ca = 0.014259 �9 IS~F q- 0.999898 �9 2SHF. 

i9" 
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I t  has been suggested that  the correlation adapted orbitMs should be close to the 
"localized orbitMs" as defined by ]~D~IISTO~ and t~V~D~S~ngG [11]. Using their 
localization criterion we obtain the ED~IISTO~-RUEDE~BERG orbitals for the Be 
ground state: 

lsgR = 0.993849 �9 iSHF -- 0.1t0741 �9 2SHF , 

2SBR = 0.i10741 �9 ISHF-~- 0.993849 �9 2SnF. 

I t  is somewhat surprising that  the correlation adapted orbitMs are so much closer 
to the canonical t IA~T~-FOCK orbitals than to the EDMISTO:bT-RUI~DE~B:EX~G 
localized orbitMs. This may in par~ be due to the fact that  the WATSO~r wave 
function contains arbitrary assumptions which anticipate this result. I t  should 
therefore be checked on more refined wave functions. On the other hand KLES- 
SI~r [15] calculations on water support the evidence that, in what concerns 
is and 2s orbitals, the canonical ttA~T~]~]~-FOCK solutions are closer to the cor- 
relation adapted orbitals than the I%V~D~C~a~-ED~ISTOX localized orbitMs. This 
is probably connected with the very big difference in orbital energy between is 
and 2s and with the almost degeneracy between 2s and 2p orbitals. For more 
"normal" cases the correlation adapted orbitals may nevertheless be localized 
rather than canonical t t~T~E-FOCK orbitMs. 

6. The natural form of the natural geminals 

Since in the APSG approximation the natural sphl orbitals of the total wave 
function are automatically natural spin orbitals of the natural spin geminMs it is 
straightforward to expand the natural geminals in terms of the natural orbitals. 
These expansions should then have the simple form 

= (1) (2) (i, 2) (14) 
$ 

(where the ~i are the spinless natural orbitMs) for the first two natural spin 
geminMs and 

1 ( t  2) (15) 
~vij = -~= [~v~ (t) ~vj (2) + ~vj (1) ~vi (2)] [0~_,,0.+, (•, 2) 

for all the other natural geminals. Expansions of this type are in fact obtained 
within the limits of accuracy in agreement with theorem 2 of section 2. Of special 

Table 3. Natural expansion o] the ]irst two natural spin geminals and the "generating" geminals 

Z~ 

18 

2s 
3s 
4s 
5s 
2p 
3p 
4p 
4d 
5d 

degeneracy c~ (1) 

.7045 

.6794 
-.0t84 

.0038 
-.0010 
-.1171 
-.0114 
-.0018 
-.0058 
-.0019 

c~ (2) 

.7086 
-.6760 
-.0187 

.0038 

.0010 

.1153 
-.0114 
-.0017 

.0058 
-.0019 

1 
2-~[e,O) +c~(2)] 

.9992 

.0024 
-.0262 

.0054 
-.0014 
-.0013 
-.0161 
-,0025 

-.0027 

1 
2-2  [c,(1) - c,(2)] 

.0029 

.9185 

.2699 

.0082 

Be2+ 

.9992 

-.0252 
-.0030 
-.0007 

- . 0173  
-.0028 

-.0030 
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interest arc the first two natural spin geminals. Their expansion coefficients c~ are 
tabulated in Tab. 3*, together with the corresponding coefficients of both the 
normalized sum and difference of ~1 and ~2. As will be demonstrated in the follow- 
ing section the latter are, in so far as the APSG approximation is valid, to be 
identified with the generating spin geminals of the wave function. 

7. The generating geminals 

I t  has been stated [19] tha t  if the APSG approximation is valid, the generating 
spin geminals are automatically natural spin geminals. I t  would be more correct 
to say tha t  the vector space spanned by the generating geminals of a 2n-electron 
system is identical with the one spanned by the first n natural  spin geminals 
(which all have the occupation number 1) - -  or, ff more than n natural spin 
geminals have the occupation number l, is contained in the vector space spanned 
by the natural  spin geminals with occupation number 1. The second order density 
matr ix  is of course invariant with respect to a unitary transformation among spin 
geminals with the same occupation number. 

We now ask, how will this theorem be changed, ff the actual wave function 
deviates slightly from an APSG typ  one. The first n natural  spin geminals will 
have occupation numbers slightly different from unity and the density matr ix  
will no longer be invariant with respect to a unitary transformation among the 
first n natural spin geminals. Which linear combinations of the generating geminals 
will then be adapted to the perturbation ? This problem will be discussed in detail 
elsewhere. We limit ourselves here to the special case of a closed shell state of a 
four-electron system. 

Suppose the actual wave function can be written in the form 

q~ (1, 2, 3, 4) = . J  ~1 (t, 2) ~2 (3, 4) § co (I, 2, 3, 4) (16) 

Ii<<l 
where co is a very small correction which represents the deviation from the APSG 
scheme. The generating gemina]s can be ~Titten: 

~fl (1, 2) = [c~ q~ (i) ~ (2) .+ ~ (1, 2)] O~ (1, 2) (t7) 

G (1,2) = [c~ ~ (1) ~ (2) ~ ~2 (~, 2)] 0~ (l, 2) 

i!o lt<<l 
where ~1 and ~s 2 are the strongly occupied (spinfree) natural orbitals, and s stands 
for the contribution of the weakly occupied natural  orbitals. 

Then 
1 

(1, 2, 3, 4) = 6 - s  [G (t, 2) G (3, 4) + G (1, 2) G (3, 4)] + 
1 

+ c~ c2 6 -~ [G (1, 2) G (3, 4) + G (1, 2) G (3, 4) + (18) 

§ ~5 (1, 2) ~5 (3, 4) § ~6 (i, 2) v~4 (3, 6)] § 

§ terms containing ~1 and/or ae q- ~o (], 2, 3, 4) 

* Off-diagonal terms in the expansion are not completely removed by the transformation 
to the natural basis. They are however small and may even resu]t h'om numerical inaccuracy. 
The most appreciable ones refer to configurations ~s (1) 2s (2). 
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where 
1 

~ (1, 2) --  2 - ~  [~1 (1) ~2 (2) + ~2 (t)  ~ i  (2)] os ( l ,  2) ( t9)  

~4, 5, 6 (1, 2) ~- 2 2 [~91 (1) 9? 2 (2) - -  ~92 ( t )  ~91 (2)] 0 t  1'0'1 (1, 2) . 

The natural spin geminals of q) are called ~v~ and their occupation numbers/~l. 
We can then expand ~ using the CArLSoN-KELLER theorem [8, 9]. 

i 
q5 (i, 2, 3, 4) = 6 -~  ~.a~ ?fli (1, 2) ~0' l (3, 4) (20) 

I a~ 12 = ~t  

where ~ and ~ '  are NSG belonging to the same eigenvalue #~. I f  #~ is not de- 
generate they are necessarily identical. Suppose that  in our wave function (t6) 
the correction eo vanishes, then the ~l are essentially equal to the strongly occupied 
~o~ [19], further l al ] = 1, a~ = c i .c2,  i = 3, 4, 5, 6. Since then In1 I = ]a2 I we 
have the choice to write the first two terms of the CARLSoN-KELLER expansion 
in either of the following ways 

~Pi = ~Pi; ~i = ~2; ~)2 = ~02; ~0~ = ~i; ai = a2, (21) 
I 1 

~ = v i  = 2 - :  [ ~  + ~2]; ~2 : ~ i  = 2 - ~  [~1 _ ~2]; ~ = - ~2. (22) 

I f  we now add a very small "perturbation" co continuously then the a~ are slightly 
modified as well as the vector spaces spanned by yJl belonging to the same/~.  
The degeneracy between/~a to/~6 will not be removed because it is due to symmetry, 
#1 and #2 may however be affected differently. Of the two alternatives (21) and (22) 
only the second one is "adapted" to this kind of "perturbation".  In other words, 
even ff there is only a very slight deviation from the APSG scheme, the "cor- 
related" natural spin geminals will no longer be (approximative]y) equal to the 
generating spin geminals, but  rather to their normalized sum and difference. 

Note that  in this demonstration no assumptions were made as to the nature 
of w, except that  it removes the degeneracy among the first two eigenvalues. 

In the Be ground state #~ > t and #~ < 1, their mean value is equal to I within 
the limits of error. This is a typical case of "removal of degeneracy". 

The natural expansion of the generating geminals "extracted" from the wave 
function is given in Tab. 3. One sees definitely which NSO belongs to the inner and 
which to the outer pair, in agreement with the results of section 4. The expansion 
coefficients of the "inner" pair may be compared with those of the natural ex- 
pansion of Be ++ [17]. 

I t  is interesting to check iuhow]ar the generating geminals extracted from the 
Watson wave function are strongly orthogonal. As a measure of the deviation 
from strong orthogonality one may define 

~V = II I ~ i  (1, 2 )~  2 (1, 2)d~2 I[" (23) 

We obtain N = 0.007, this means, the deviation from strong orthogonality is less 
then 1%. One may, of course, "purify"  the geminals by omitting terms which 
violate the strong orthogonality. On the other hand the fact that  an orbital 
strongly occupied by one geminal may be simultaneously, but  weakly occupied 
by the other geminal, may be a hint how to refine the theory. 
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Conclusions 

The fact tha t  the results of this paper are in favour of the APSG approximation 
is not much astonishing since AT.L~X and S~trLL have shown before in a much 
simpler way tha t  the WATSO1V wave function for the Beryllium ground state can 
be approximated rather well by  an APSG wave function. The method used in 
this paper to test  the validity of the APSG approximation, is, however, more 
generally applicable and furnishes some interesting extra results. I t  is possible to 
calculate the correlation-adapted-orbitals from a given wave function and to 
"ex t rac t"  the generating spin geminals from it. One might, as SI~r [27] 
would say, "pur i fy"  the original wave function from "spurious" terms which 
violate the APSG conditions, by  constructing a new wave function from the ex- 
tracted generating geminals. Whether or not one might thus get a better energy, 
i.e. whether or not the terms violating the APSG conditions are "spurious" is 
questionable. The fact tha t  a given numerical wave function contains such terms 
does not necessarily mean tha t  they have a physical meaning. 

The results obtained here have to be checked on more refined wave functions 
of the Be ground state and on other systems. Since the electron pair approxiraation 
as represented by the APSG scheme is relatively simple and quite visualizablc, 
it is important  to know how good it is and what it implies. 

I t  seems to be quite clear tha t  the A P I G  scheme is not a good approximation 
for the Be ground state - -  although it is necessarily bet ter  than the Hi~TREF,- 
FOrK approximation - - ,  because it implies wrong relation between the first and 
second order density matrices. Whether it is superior to the APSG scheme for 
other atomic or molecular systems is an open question. 

The APSG scheme cannot account for geminal occupation numbers bigger than 
one, the A P I G  scheme however can. I f  eigenvalnes bigger than one are relevant 
in quantum chemistry, then it seems straight-forward to work with a generalized 
electron pair scheme which contains both APSG and A P I G  as special cases [19]. 

One may  recall tha t  the WATS01r wave function has also been used by 
SI~r [27], namely to test  some implications of his limited cluster expansion 
method. That  the results were positive is not surprising, if one considers tha t  the 
APSG approximation is obviously a good approximation and tha t  the relations 
between this scheme and the limited cluster expansion methods are closer than is 
often believed. 

Appendix 
Relation between the eigenvalues of the first and second-order density matrices 

in the antisymmetrie product of identical geminals (APIG-) appreximation 

In  the framework of this approximation the wave function for a 4-electron sys tem can be 
written 

q~ = N' ~r (1,2)~ (3,4) (AI) 

The generating geminal F can be expanded in terms of its natural spin orbitals X* which 
are as well the natural spin orbitals of the total wave function. I t  has then the form 

8 

t~ (1, 2) ~ ~a~ ~2,-~ (1) Z2~ (2) - Z2~ C) Za~-~ (2)3 . A (2) 
i=1 

Inserting this expansion into (A 1) we obtain 
= N X a ~  ajdet  [Z2~-~ (1) Z2~ (2) 7.2j-x (3) Z2J (4)] . (A 3) 

i<J 
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The occupation number  of Z* in the 1 ~t order density matr ix  of the total  wave function is, as 
usual, called m. We define fur ther  the occupation number  of Zi in the 1 ~t order density matr ix  
associated with the geminal ~. 

72, = 2 [a~ [2 = ~2t-~ (A4) 

The normalization integral is then  given by  
1 1 

N = ( ~  I a~ [51 ~J i s) - 3  = 4 (2 - z ~ ,  ~) - ~ .  (A  5) 
i<J i 

In  order for the wave function ~b not  to  vanish the rank  (summation limit) s must  be at  least 
equal to 4. I f  s = 4, q) represents one slater determinant .  We obtain the bounds 

0 -< ~ _< �89 (A 6) 

0 _ < z ~ _ < l  (AT) 

Vs _< N _< 4 .  (A S) 

= 4 corresponds to the  HAI~,TREE-FOCK case, where q~ is a single de terminant ,  N = 8 
corresponds to COLEMAN'S "extreme type functions",  where s > 4 and all a, are equal. For 
closed shell atomic and molecular states we can assume N ~ 4. I f  we calculate the l~t order 
density matr ix  of r using (A 3) we obtain the v, in terms of the ~, 

v ~ = � 8 8  2 ( 1 - ~ , ) ~ ,  . ( A 9 )  

I f  we know N we can solve this equation for ~ 

16v~N -~ ~ 1 

Of the two roots of the 2 ~ order equation only the one with the minus-sign is valid, by  virtue 
of (A 6). 

For weakly occupied natura l  spin orbitals m ~ t ,  and  we get 

~l = 4 r a n  - ~  - v ~ N - ~  + . .  �9 ( A  11) 

I f  we assume t h a t  the state is of closed shell type  and therefore N ~ 4, we get the  ap- 
proximate relation for weakly occupied orbitals 

~ l m  i f v ~ < l  . (A12) 

For strongly occupied na tura l  spin orbitals, however, v, ~ ~ and ~, ~ �89 this  means 

~ , ~ � 8 9  i f v ~ l  . (A13) 

The eigenvalues of the  second order density mat r ix  can be expressed in terms of the Y, 
and  by  vir tue of (A 12) and  (A ~3) in terms of the v~. 

The 2 ~n order density mat r ix  has s "correlated" eigenfunctions, i .e.  natura l  spin geminals 
of the form (A 2), any of the corresponding eigenvalues is bounded above by  2, their  sum is 
bounded by  2 as well. The bound 2 is approached by  one occupation number,  only if simul- 
taneously all the other eigenvalues approach zero. In  the  limiting case of the  independent- 
partiCle model two eigenvalues become equal  to 1, ~nd the occupation numbers  of the other 
correlated geminals vanish. 

The other 2s (s - 1) na tura l  spin geminals are simple ant isymmetrized products of natural  
spin orbitals and their  occupation numbers  are given by 

/ m  = ~ N ~ ~ ~ �9 ( A  ~ 4 )  

Because of the  even degeneracy of the  g,, any/~,a has a degeneracy divisible by  4 - -  just  as 
one finds for the  APSG approximation. 

By virtue of (A ~2) and  (A 13) and put t ing N * ~ ~6 we can now predict t ha t  if the APIG 
approximation is valid for a 4-electron closed shell s tate the eigenvalues of the  non-correlated 
natura l  spin geminals ,u,a should be related to the occupation numbers  of the n~tural  spin 
orbitals by  one of the  approximate formulas 

t"; ~ ~ v~ v~ (A ~5) 

~ v~v~ (A17) 
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where (A ~5) holds if both Z* and Z~ are weakly occupied, (A 16) if either 7.* or 7~ is weakly and 
the other strongly occupied and (A 17) if both Zs and Z~ are strongly occupied. 

One may mention that for COLE~A~'S extreme type wave functions [9, 10] (A ~3) and 
(A 16) hold generally, but the Be ground state is anyway far from being describable by a wave 
function of that type. 

Acknowledgements. The idea to test the APSG approximation on :FoGEL'S numerical 
density matrices originated from discussions with Dr. V~Dn~E H. S ~ I ~  in the "Quantum 
Chemistry Group" Uppsala in Summer 1964. 
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