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The WaTson-wave function for the Be ground state is used to check the necessary condi-
tions — derived previously — for the validity of the antisymmetrized product of strongly
orthogonal geminal (APSG) approximation. The agreement between the actual properties of
the numerical 15t and 284 order density matrices and those predicted from the APSG scheme
is satisfactory, whereas the predictions made in the framework of the antisymmetrized
product of identical geminals (APIG) scheme are not at all realized. “Correlation adapted”’
orbitals and “generating geminals” are “extracted” from the given numerical wave function.
The former are compared with the Epmiston-RUEDENBERG localized orbitals, the latter with
the Be** wave functions.

An Warsoxs Wellenfunktion fiir den Be Grundzustand werden die notwendigen Bedin-
gungen fiir die Giiltigkeit der APSG-N&herung getestet, die frither abgeleitet worden waren
(APSG = Antisymmetrisiertes Produkt stark orthogonaler Geminale). Die Ubereinstimmung
zwischen dem tatsichlichen Verhalten der numerischen Dichtematrizen 1. und 2. Ordnung
und demjenigen, das vom Standpunkt der APSG-Niherung vorausgesagt wird, ist zufrieden-
stellend. Uberhaupt nicht erfiillt werden allerdings die Voraussagen der APIG-N#herung
(APIG = Antisymmetrisiertes Produkt identischer Geminale). Die ,,korrelationsadaptierten
Orbitale sowie die ,,erzeugenden Geminale‘* werden, ausgehend von der gegebenen Funktion,
konstruiert, und erstere mit den EpmisToN-RuEpENBERGschen lokalisierten Orbitalen ver-
glichen, letztere mit der Wellenfunktion des Be**.

On se sert de la fonction numérique de Watson pour 1'état fondamental de I'atome de
Beryllium pour examiner les conditions nécessaires dérivées antérieurement, qui doivent étre
satisfaites si Papproximation APSG est valable. Dans le cadre de cette approximation la
fonetion d’onde peut étre représentée comme produit antisymmétrique de géminales fortement
orthogonales. Les prédictions faites & partir de ce modeéle et les propriétés des matrices densité
numériques sont en bon accord. Il n’en est pas autant pour I'approximation APIG ol l'on
choisit les géminales identiques plutdt que fortement orthogonales. On «extrait » les ¢orbitales
adaptées & la corrélation » aussi bien que les ¢géminales génératrices » de la fonction numérique.
Les premiéres sont comparées aux «orbitales localisées » d’EpmIsToN et RUEDENBERG, les
secondes & la fonction d’onde de Bet+,

Introduction

The method [14] of describing a quantum mechanical state of a 2n-electron
system approximatively by an Antisymmetrized Product of Strongly orthogonal
Geminals (APSG) has recently been formulated in terms of natural orbitals and
natural geminals [19]. Several theorems have been obtained which are necessarily
fulfilled by the first and second order density matrices of a given state provided
that the APSG approximation is an exact description and which are supposed to
be almost fulfilled if the APSG scheme is a good approximation.
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It is therefore straightforward to test the validity of the APSG approximation
by examinating in how far 15t and 204 order density matrices obtained from good
numerical wave functions have the properties which one would expect if the APSG
approximation is valid. Unfortunately the only state of a 2n (> 2)-electron
system for which sufficiently accurate wave functions are available is the Beryllium
ground state [30, 3I]. From the wave function computed by Warson [30],
Foexr [12] has caleulated the reduced density matrices and the natural orbitals
and geminals for this state*. The first order density matrix of the same state has
been calculated before from the somewhat simpler Bovys wave function [6] by
SeULL and LinDERBERG [28]. These authors also calculated the natural expansion
of the wave function.

In this paper both those theorems which have to be valid irrespective of any
approximation [3, 9, 18, 21, 22] and those which are necessary conditions for the
validity of the APSG approximation [19] will be checked for the numerical
Beground state density matrices. The same test can be applied to any other
case.

A11EN and SHULL [1] have pointed out that in omitting those terms in the
WaTsoN function which violate the strong orthogonality condition one can con-
struct an APSG wave function which has an overlap of .99889 with the Warsox
function. MoWEENY and SuTcLIFFE [23] have published a variation calculation
for the Be-ground state using an APSG type wave function. Although their trial
geminals were somewhat too simple, they concluded that the APSG scheme should
be a rather good approximation for the Be-ground state. The usefulness of the
APSG approximation is hence not in doubt, a more precise analysis of both its
merits and its limitations is however needed.

The APSG typ wave function belongs to a special class of wave functions,
which are Antisymmetrized Products of Geminals (APG), but with the additional
restriction of Strong orthogonality. There is evidence [23] that the appreciable
increase in mathematical complication on relaxing the strong orthogonality con-
straint is not worth the very small gain of accuracy of the wave function and the
energy. Another special class of APG functions has recently received interest in
quantum chemistry, namely the Antisymmetrized Products of Identical Germinals
{APIQR). These have sometimes been called (N-projected) BCS-functions, because
of their relation to the BARDEEN-COOPER-SCHRIEFFER theory [2, 5, 10, 24] of super-
conductivity**. The reduced-density-matrix formulation for functions of this type
has been given by CoLEMAN [10]. BraToZ [7] has suggested that APIG wave func-
tions (they contain the independent model as a special case, so do — by the way —
the APSG functions) might also be useful for atomic and molecular calculations,
e.g. for the Be-ground state. We shall therefore test as well if the WATsoN function
has the properties which are necessary conditions for the fulfilment of the APIG
approximation.

Investigations of this type are also useful if one wants to eliminate the wave
function from quantum mechanics and to work with density matrices only.

* The author is indebted to Prof. P. 0. LowpIN for making him Dr. Foerr’s thesis
available.

**x Braroz used the name “fonction biorbitale”” and CorLEMAN recently proposed “‘anti-
symmetrized geminal power” or AGP, which must not be mixed up with APG as used here.
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1. General properties of the reduced density matrices
General properties of the reduced density matrices have been derived by
various authors [3, 4, 8, 9, 18, 21, 22]. If @ (1, ...n) is a wave function of an
n-electron system, than the 18t order density matrix y (1, 1') and the 274 order
density matrix I" (1, 2; 1', 2') are defined by

y (L1 =B 2...0)D* (1", 2. . . 0)dr,...dvy, (1)
ra,2;1,2) = (g)jq)(i, 28, . (1,2,3.. .n)dr,..dtn . (2)

The natural spin orbitals (NSO) y; (1) and their occupation numbers »; as well as
the natural spin geminals (NSG) y; (1, 2) and their occupation numbers u; are the
eigenfunctions and eigenvalues of the integral operators defined by the 15t and
2nd order density matrices respectively.

Ty (1) 2 (V) dry = wi i (1) 3)
f,2; 1, 2w (1, 27) dryr degy = pe e (4, 2) (4)

We are especially interested in symmetry properties, degeneracies and bounds
of the eigenvalues. If we limit ourselves to the %S-state of a 4-electron atom, we find :

1. Both the NSO and the NSG are pure spin state functions. They can be
labelled with quantum numbers s and mg [3, 22].

2. The eigenvalues »; of the first order density matrix are evenly degenerate.
To any pair of equal eigenvalues corresponds the same space orbital, multiplied
by «- and by S-spin [3, 22].

3. The trace of the 15t order density matrix is (in LOwDIN normalization [21])
equal to the number of electrons, i.e. 4. Any eigenvalue »; is bounded above by 1.

4. The trace of the 204 order density matrix is (again in LOWDIN normalization)

equal to (g) i.e. < ) = 6. Any eigenvalue is bounded above by #/2 == 2 [9, 26].
5. The second order density matrix can be decomposed in the following way
into space and spin factors [78]
1,2, 0,2)="T5 (ryry | ry73) 05 (1,2) 0F (1, 2) + (5)
2 S .
+ L (ryry 11 72) 1;1 0f (1,2) - 6 (1', 2)

where i ; are the normalized two-particle spin funetions

1
6: (1,2) =2 *[a (1) f(2) — B (1) « (2))
677 =fMER  B=a)x(@® (6)

1
0 =2 Ta)BE@) +A (1) x(@).

The trace of the singlet density matrix I's is equal to 3, the trace of the triplet
density matrix I} is equal to 1. Any eigenvalue of [" corresponding to a NSG of
triplet type has degeneracy divisible by 3.

6. Both NSG and NSO are adapted to the point symmetry group, ¢.e. the
threedimensional rotation group. They can therefore be labelled with angular
quantum numbers [ and m;. Those NSG (or NSO) which have the same I, but

different m; have the same occupation number, which has consequently degeneracy
divisible by (274 1).
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Note that in order to derive theorems 1 and 2 it is necessary to assume that for the 4-
electron state Ms = 0, for theorem 5 that § = 0 and for theorem 6 that L = 0. Hence they are,
contrary to theorems 3 and 4 not generally valid for other than 1S-states.

2. Special properties of the reduced density matrices in the APSG scheme
If the wave function of the 4-electron system can be written as an antisym-
metrized product of strongly orthogonal normalized two-electron functions (ge-
minals) [74]
D=y (1,2) 9, (3, 4) (7)

[ (1, 2) 9o (1, 2) dry = 0 (®)
then its reduced density matrices satisfy the following theorems [19] in addition
to those outlined in section 1.

1. The natural spin orbitals can be classified into two sets, to be labelled with
superscripts K and L referring to K and L-shell respectively, such that

Zvi=2vi=2 (©)
(3 K3
and that no natural spin orbital belongs to both sets.
2. The NSO of the total wave function @ are automatically natural spin orbitals
of the generating spin geminals v, and ,, and of all the natural spin geminals.
3. Exactly two natural spin geminals are of correlated type, i.e. when expanded
in terms of their natural spin orbitals they have the form
p (1, 2) = 2 ¢ Dmia (1) 220 (2) ~ g2i (1) i (2)] (10)
whereas all the other NSG are simple antisymmetric products of natural spin
orbitals*. We call them “non-correlated”.

1
p(1,2) =2 %[ (1) 2 (2) = 2 (D)2 ()] (11)
The two correlated NSG have the occupation numbers equal to one, the occupation
numbers of the other NSG are bounded above by one.

4. Any triplet type natural spin geminal has the same occupation number as a
singlet type geminal. The corresponding eigenvalue has hence degeneracy divisible
by3+1=4

5. The two correlated natural spin geminals are (except for a unitary trans-
formation, since they belong to the same eigenvalue) equal to the (strongly ortho-
gonal) generating spin geminals.

6. The occupation numbers uz of the non-correlated NSG are expressible as
products of those of the NSO, belonging to different sets as defined in 1.

g =vE vk (12)

Note that in this scheme the eigenvalues of the 2nd order density matrix are
expressible in terms of those of the 15t order one. The fulfilment of this statement
can be most easily tested.

3. Special properties of the reduced density matrices in the APIG approximation
We are here especially interested in relations between the eigenvalues of the
1st and 204 order density matrices. These are less easily obtained than for the APSG

* Or, if they belong to a degenerate eigenvalue, possibly linear combinations of “degene-
rate” antisymmetric products.
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approximation. Since we shall see that the relations predicted from the APIG
approximation are not at all realized by the actual density matrices of the Beryl-
lium ground state, it is sufficient to derive these relations approximatively.

If a four electron wave function is expressible as an antisymmetric product of
two identical geminals, the following theorems ought to hold. The proofs are given
in the appendix. As to a formal treatment of this scheme see ref. 10.

1. There is no classification of the natural spin orbitals into two sets. Any of
them belongs to the inner as well as to the outer pair.

2. The natural spin orbitals of the total wave function are also natural spin
orbitals of the generating geminal and of all the natural spin geminals.

3. There are correlated NSGQG, i.e. they are of the form (10) and uncorrelated
ones, i.e. they are simple antisymmetrized products of NSO (11). The sum of the
occupation numbers of the correlated ones is equal to 2, of the uncorrelated ones
to 4, the total sum being 6. The occupation number of any of the correlated NSG
is bounded above by 2, of any uncorrelated one by 1. If one eigenvalue approaches
the bound 2, all the other eigenvalues tend simultaneously to zero.

4. The occupation numbers of the correlated NSG may all be different, those
of the non-correlated NSG have degeneracy divisible by 4.

5. The generating geminal is, in general, not equal to any of the natural spin
geminals.

6. The eigenvalues u;; of the non-correlated NSG are related to the occupation
numbers of the natural spin orbitals v; approximatively by the following relation

i~ 4@ vy (13)
where ¢ = § if both »; < 1 and v; < 1
a =% if v; ~ 1, ;< 1 or vice versa
a=14ifyy~1,v~ 1L

This theorem is essentially different from the corresponding one in the APSG
scheme. Note that here all possible products a - ¥; 5 should appear as yg;.

4. Analysis of the Beryllium ground state

The highest eigenvalues of the 15t and 2nd order density matrices of the Be-
ground state are collected in Tab. 1 and 2, together with their degeneracy and
their label. The twofold degeneracy as stated by theorem 2 of section 1 obtains,
so does theorem. 6.

If one assumes that the inner pair of the Be-atom resembles to the Bet+t.ion
in its ground state [17], at least as much that the corresponding eigenvalues of the
respective density matrices are of the same order of magnitude, then one can make
a first guess which of the orbitals of the Be-atom. probably belong to the inner and
which to the outer shell. The division of the »; into two sets is then achieved by
trying to satisfy theorem 1 of section 2. In fact one finds

2K = 1.99997 2yl = 2.00002
for the WaTsoN wave function and
2K = 2.00004 2yl = 1.99996

for the Boys wave function.

Theoret, ehim. Acta (Berl.), Vol. 3 19
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Table 1. The firsi eigenvalues of the 15t order density matrix

Nr. degeneracy shell label v (WATSON) v (Boys) l v (Be?h)
1,2 2 | K 1s .998306 998877 i 99838
3,4 2 L 2s 918574 912102
510 6 L 2p 027034 .029299
11, 12 2 K 3s P .000721 .000571 .000633
13 — 18 6 K 3p J .000281 ‘ 000182 | .000297
19 — 28 10 L 3d .000066
29 — 30 2 K 4s 000034 \ :
31 - 32 2 K 5s .000009 | | .000009
33 — 42 10 K 44 .000008 ‘ ’ .000009
43 — 48 6 K 4p } .000008 .000007
49 — 50 2 K s .000007
51 — 60 0 | K | sd | .000001 |
=z 3.99999 3.99999 1.99996

This division into two sets is checked by forming the possible products of the
y; and comparing them with the eigenvalues of the 274 order density matrix
(Tab. 2). The agreement between the actual eigenvalues and those predicted by
the APSG approximation is excellent, and only those products are found which
are in agreement with theorem 6 of section 2.

That theorems 5 and 6 of section 1 are fulfilled, is not at all trivial. When
Focerrn did his calculations no general theorems on the symmetry properties of
natural spin geminals were known, and he was surprised to find the NSG symmetry
adapted and pure spin state functions. According to theorem 5 of section 1 the
NSG 4 — 6 must have the same occupation numbers. The actual values are
917100, .916971, .916971. The small differences are a measure of the accuracy of
the whole caleulation; in Tab. 2 the mean value 91701 is given, it is, however,
equal to the occupation number of geminal 3. This coincidence is not expected for
general wave functions, but for those of APSG-type (theorem 4 of section 2).

We come back later to theorems 3 and 5 of section 2 and state that so far the
prediction made for the APSG scheme are well fulfilled. On the other hand the
theorems which should be expected if the state could be described by an APIG
wave function are not at all verified.

Table 2. The first eigenvalues of the 22 order density matriz

Nr. degeneracy ! label eigenvalue assignmentby APSG! predicted by APSG
1 1 18 1.00085 generating \ 1.00000
2 1 19 .99893 f
3 1 18 C.91701 1s x 2s ‘ 91702
4 -6 3 38 91700
7T—9 3 1p .02700 1s x 2p ¥ 102699
10 — 18 9 3P 02700 :
19 1 18 .00069 2s x 3s I 00066
20 - 22 3 58 00069 |
23 —- 25 3 ip .00026 2s x 3p ‘ .00026
26 — 34 9 3P 00026
35 -39 5 D | .000065 1s x 3d 000066
40 — 54 15 3D 000065
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This is clearly seen if we compare the eigenvalues of the second order density
matrices calculated from those of the v; by use of eq. (13) with the actual ones.
Instead of 12 NSG with ocecupation number ~ .027 as predicted from the APSG
type wave function we should e.g. expect 24 NSG with occupation numbers ~ .013.

The only fact which is better predicted from the APIG scheme is that the
occupation numbers of the first two NSG may be different and are not bounded
by one. It is a serious drawback of the APSG approximation in that it cannot
account for a geminal occupation number bigger than one, which evidently occurs,
although the deviation from unity is rather small.

5. The correlation adapted orbitals

It has been recognized quite early that for two electron systems the first
natural orbitals are very close to the HARTREE-Fock-orbitals [29]. The question
whether or not the two types of orbitals should be identical can now be regarded
as settled in the sense that they are essentially different [76, 25]. That they are
not very different is demonstrated by the fact that for atoms their 1/Z-expansions
coincide up to the 1/7Z term and their expectation values with respect to the
Hamiltonian even up to the 1/Z3-term [25].

For closed-shell states with more than two electrons one finds essentially the
same behaviour [13, 20]. The corresponding theorem cannot, however, be quoted
in the simple form that the “strongly occupied” natural orbitals .e. those which have
occupation numbers s 1 coincide with the HarTrEE-Fock orbitals up to linear
terms in a perturbation parameter. By HarTrEE-Fock-orbitals we mean in general
those solutions of the HArTREE-Fock equations which diagonalize the HARTREE-
Fook operator, although any orthogonal linear combinations of them satisfy the
HarrrEn-Fook equations as well. The integro-differential equations satisfied by
the strongly occupied natural orbitals — which differ from the HarTrEE-Focor
equations by a small correlation potential [16, 17, 19] are no longer invariant with
respect to unitary transformations. The presence of the (non-local) correlation
potential removes (at least partially) the arbitrariness in the choice of the HARTREE-
Fooxk orbitals and allows us to define correlation adapted orbitals which are linear
combinations of the canonical HARTREE-FoCK orbitals. These correlation adapted
orbitals are then slightly modified by the correlation potential to yield the strongly
occupied natural orbitals.

The Warson wave function has been built up from the HARTREE-Fock wave
function and “excited configurations”. Singly excited configurations were not
incorporated since they do not much effect the energy, although it is not justified
to neglect them completely. Due to the neglect of singly excited configurations the
strongly occupied natural orbitals obtained from this particular wave function
span the same vector space as the HARTREE-Fock orbitals. The effect of the
correlation potential is hence just to rotate the coordinate system of this space
and to specify correlation adapted linear combinations of the HaRTREE-Fock
orbitals. If we call the canonical HARTREE-FoCK orbitals 1sgzr and 2sg» we obtain
from the WaTsox wave function the correlation adapted orbitals

184 = 0.999898 - lsgp — 0.014259 - 2555,

28¢q = 0.014259 - 1547 + 0.999898 - 255 5.
19%
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It has been suggested that the correlation adapted orbitals should be close to the
“localized orbitals” as defined by Epmiston and RurpENBERG [11]. Using their
localization criterion we obtain the EpmrsToN-RUEDENBERG orbitals for the Be
ground state:

lsgr = 0.993849 - lsgp — 0.110741 - 254,

2spr = 0.110741 - 1sgp -+ 0.993849 - 255 5.

It is somewhat surprising that the correlation adapted orbitals are so much closer
to the canonical HARTREE-Fock orbitals than to the EpmisToN-RUEDENBERG
localized orbitals. This may in part be due to the fact that the WarsoN wave
function contains arbitrary assumptions which anticipate this result. It should
therefore be checked on more refined wave functions. On the other hand Kres-
SINGER’S [15] calculations on water support the evidence that, in what concerns
1s and 2s orbitals, the canonical HARTRER-Fooxr solutions are closer to the cor-
relation adapted orbitals than the RUEDENBERG-EDMISTON localized orbitals. This
is probably connected with the very big difference in orbital energy between 1s
and 2s and with the almost degeneracy between 2s and 2p orbitals. For more
“normal” cases the correlation adapted orbitals may nevertheless be localized
rather than canonical HarTrEE-Fook orbitals.

6. The natural form of the natural geminals

Since in the APSG approximation the natural spin orbitals of the total wave
function are automatically natural spin orbitals of the natural spin geminals it is
straightforward to expand the natural geminals in terms of the natural orbitals.
These expansions should then have the simple form

p= g (D)t 2)0:(L2) (14)

(where the ¢; are the spinless natural orbitals) for the first two natural spin
geminals and

1 0s (1, 2)
R A ACTICES ACLICIE v
for all the other natural geminals. Expansions of this type are in fact obtained

within the limits of accuracy in agreement with theorem 2 of section 2. Of special

(15)

Table 3. Natural expansion of the first two natural spin geminals and the “generating” geminals

1 1

X degeneracy ¢i (1) ci(2)  |272[ci(1) +¢:(2)]} 272 [ei(1) —¢i(2)]] Be?t
1s 1 1045 .7086 .9992 0029 .9992
2s 1 6794 | -.6760 .0024 9185 —
3s 1 —.0184 | —.0187 -.0262 - —.0252
4s 1 .0038 .0038 0054 — —.0030
5s 1 —.0010 0010 -.0014 : — -.0007
2p 3 -117 1153 -.0013 .2699 —
3p 3 -.0114 —-.0114 —.0161 — -.0173
4p 3 —.0018 -.0017 —.0025 — —-.0028
4d 5 —.0058 .0058 — .0082 —
5d 5 —.0019 -.0019 | -.0027 — —-.0030




Electron Pair Approximation for the Beryllium Ground State 249

interest are the first two natural spin geminals. Their expansion coefficients ¢; are
tabulated in Tab. 3%, together with the corresponding coefficients of both the
normalized sum and difference of y; and y,. As will be demonstrated in the follow-
ing section the latter are, in so far as the APSG approximation is valid, to be
identified with the generating spin geminals of the wave function.

7. The generating geminals

It has been stated [19] that if the APSG approximation is valid, the generating
spin geminals are automatically natural spin geminals. It would be more correct
to say that the vector space spanned by the generating geminals of a 2n-electron
gystem is identical with the one spanned by the first » natural spin geminals
(which all have the occupation number 1) — or, if more than = natural spin
geminalg have the occupation number 1, is contained in the vector space spanned
by the natural spin geminals with occupation number 1. The second order density
matrix is of course invariant with respect to a unitary transformation among spin
geminals with the same occupation number.

We now ask, how will this theorem be changed, if the actual wave function
deviates slightly from an APSG typ one. The first » natural spin geminals will
have occupation numbers slightly different from unity and the density matrix
will no longer be invariant with respect to a unitary transformation among the
first » natural spin geminals. Which linear combinations of the generating geminals
will then be adapted to the perturbation ? This problem will be discussed in detail
elsewhere. We limit ourselves here to the special case of a closed shell state of a
four-electron system.

Suppose the actual wave funetion can be written in the form

D(1,2,3,4) =L P (1,2 73,4 +o 23 4) (16)
o ||<1

where o is a very small correction which represents the deviation from the APSG
scheme. The generating geminals can be written:

Y1 (1, 2) = [ey @ (1) @1 (2) + 0y (1, 2)] 05 (1, 2) 17
Pp (1,2) = [e2 @y (1) @2 (2) + 03 (1, 2)] 05 (1, 2

oy [ <1

o ll<t

where @, and g, are the strongly occupied (spinfree) natural orbitals, and o stands
for the contribution of the weakly occupied natural orbitals.
Then

i ~ ~
@(1, 2,3,4)=6 21[1/)1 (1, 2) Py (3, 4) + Py
+e196 2[5 (1,2) Ps (3, 4) + Py (1, 2) 6 (3, 4) + (18)

+ s (1, 2) D5 (3, 4) + g (1, 2) 9, (3, 4)] +

+ terms containing ¢y andjor ¢, 4+ @ (1, 2, 3, 4)

* Off-diagonal terms in the expansion are not completely removed by the transformation
to the natural basis. They are however small and may even result from numerical inaccuracy.
The most appreciable ones refer to configurations 1s (1) 2s (2).
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where
7 (1,2) = 27F (g, (1) 32 2) + g0 (1) g 201 04 (4,2 (19)
Tose12) =22 g (1) gy () — g5 (1) gr (2] 67201 (1,2) .

The natural spin geminals of @ are called y; and their occupation numbers y;.
We can then expand @ using the Carrson-KeLLER theorem [8, 9].

1 ,
D(1,2,3,4) =6 2 Yayyi (1,2) y; 3, 4) (20)
%
| [P =
where y; and ;" are NSG belonging to the same eigenvalue y;. If p; is not de-
generate they are necessarily identical. Suppose that in our wave function (16)
the correction @ vanishes, then the ; are essentially equal to the strongly occupied
wi [19), further |a; | =1, ag=c¢, ¢y, +=3,4,5,6. Since then |a, | = |a,| we

have the choice to write the first two terms of the CarrsoN-KELLER expansion
in either of the following ways

1I’1="~/)13"l”1 = @2; "{’2=Ez§"/)lz =77)1§ 0y = Qy, (21)

_1 _1

Pr=91 =2 2 [P+ Poli o= =2 B[P~ Pols 0y = — ap. (22)
If we now add a very small “perturbation” « continuously then the a; are slightly
modified as well as the vector spaces spanned by y; belonging to the same u;.
The degeneracy between u to g will not be removed because it is due to symmetry,
[, and u, may however be affected differently. Of the two alternatives (21) and (22)
only the second one is ‘‘adapted’ to this kind of “perturbation”. In other words,
even if there is only a very slight deviation from the APSG scheme, the “cor-
related” natural spin geminals will no longer be (approximatively) equal to the
generating spin geminals, but rather to their normalized sum and difference.

Note that in this demonstration no assumptions were made as to the nature
of w, except that it removes the degeneracy among the first two eigenvalues.

In the Be ground state u; > 1 and u, < 1, their mean value is equal to 1 within
the limits of error. This is a typical case of ““removal of degeneracy”.

The natural expansion of the generating geminals “extracted” from the wave
function is given in Tab. 3. One sees definitely which NSO belongs to the inner and
which to the outer pair, in agreement, with the results of section 4. The expansion
coefficients of the “inner” pair may be compared with those of the natural ex-
pansion of Bett [17].

It is interesting to check inhowfar the generating geminals extracted from the
Watson wave function are strongly orthogonal. As a measure of the deviation
from strong orthogonality one may define

N=|fyp:(1,2) 92 (1, 2) drs ||. (23)

We obtain N = 0.007, this means, the deviation from strong orthogonality is less
then 19,. One may, of course, “purify” the geminals by omitting terms which
violate the strong orthogonality. On the other hand the fact that an orbital
strongly occupied by one geminal may be simultaneously, but weakly occupied
by the other geminal, may be a hint how to refine the theory.
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Conelusions

The fact that the results of this paper are in favour of the APSG approximation
is not much astonishing since ALLEX and SHULL have shown before in a much
simpler way that the Warsox wave function for the Beryllium ground state can
be approximated rather well by an APSG wave function. The method used in
this paper to test the validity of the APSG approximation, is, however, more
generally applicable and furnishes some interesting extra results. It is possible to
calculate the correlation-adapted-orbitals from a given wave function and to
“extract” the generating spin geminals from it. One might, as Sivawoeru [27]
would say, “purify”’ the original wave function from ‘“spurious” terms which
violate the APSG conditions, by constructing a new wave function from the ex-
tracted generating geminals. Whether or not one might thus get a better energy,
t.e. whether or not the terms violating the APSG conditions are “spurious” is
questionable. The fact that a given numerical wave function contains such terms
does not necessarily mean that they have a physical meaning.

The results obtained here have to be checked on more refined wave functions
of the Be ground state and on other systems. Since the electron pair approximation
as represented by the APSG scheme is relatively simple and quite visualizable,
it is important to know how good it is and what it implies.

It seems to be quite clear that the APIG scheme is not a good approximabion
for the Be ground state — although it is necessarily better than the HARTRER-
Fock approximation —, because it implies wrong relation between the first and
second order density matrices. Whether it is superior to the APSG scheme for
other atomic or molecular systems is an open question.

The APSG scheme cannot account for geminal occupation numbers bigger than
one, the APIG scheme however can. If eigenvalues bigger than one are relevant
in quantum chemistry, then it seems straight-forward to work with a generalized
electron pair scheme which contains both APSG and APIG as special cases [19].

One may recall that the Warsox wave function has also been used by
SINANOGLU [27], namely to test some implications of his limited cluster expansion
method. That the results were positive is not surprising, if one considers that the
APSG approximation is obviously a good approximation and that the relations
between this scheme and the limited cluster expansion methods are closer than is
often believed.

Appendix

Relation between the eigenvalues of the first and second-order density matrices
in the antisymmetric product of identical geminals (APIG-) appreximation

In the framework of this approximation the wave function for a 4-electron system can be
written

D =N 2y (1,2)p(34) (A1)

The generating geminal  can be expanded in terms of its natural spin orbitals y; which
are as well the natural spin orbitals of the total wave function. It has then the form

S
v (1,2) = Zai [xzi-1 (1) x20 (2) — x2e (1) g21-1(2)] . A(2)
=1
Inserting this expansion into (A 1) we obtain
D = N Xa;a;det [yzi_a (1) x2: (2) y25—1 (3) 25 (£)] . (A 3)

i<f
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The occupation number of y; in the 1st order density matrix of the total wave function is, as
usual, called »;. We define further the occupation number of ¥, in the 15t order density matrix
associated with the geminal .

Pas =2 ai |2 = Faea (A 4)
The normalization integral is then given by
1
Ne@lal|ap-2<4@-2m)-%. (A 5)
i<J 2

In order for the wave function @ not to vanish the rank (summation limit) s must be at least
equal to 4. If s = 4, @ represents one slater determinant. We obtain the bounds

OS'fJ'iS% (A 6)
0 <Z7} <1 (A7)
VB<N <4, (A8)

N =4 corresponds to the HARTREE-FoCK case, where @ is a single determinant, N = 8
corresponds to COLEMAN’s “‘extreme type functions”, where s> 4 and all a; are equal. For
closed shell atomic and molecular states we can assume N ~ 4. If we calculate the 1st order
density matrix of @ using (A 3) we obtain the v; in terms of the #;

vi= 3 N2(1 - ) 7 . (A9)
If we know N we can solve this equation for 7;
=% —-LVT-16n N2 =31 -1+8nuN2-212N1 ... (A 10)
16 N2 <1
Of the two roots of the 24 order equation only the one with the minus-sign is valid, by virtue
o (ﬁo?.weakly occupied natural spin orbitals v: < 1, and we get
Py =4y N2 —9p2 N~ + | . (A11)

If we assume that the state is of closed shell type and therefore N ~ 4, we get the ap-
proximate relation for weakly occupied orbitals

ﬁimim if vi<1 . (A12)
For strongly occupied natural spin orbitals, however, »; ~ 1 and # ~ 1, this means
’hN%W if v ~1 . (A13)

The eigenvalues of the second order density matrix can be expressed in terms of the 7;
and by virtue of (A 12) and (A 13) in terms of the ;.

The 2u¢ order density matrix has s “correlated” eigenfunctions, .e. natural spin geminals
of the form (A 2), any of the corresponding eigenvalues is bounded above by 2, their sum is
bounded by 2 as well. The bound 2 is approached by one occupation number, only if simul-
taneously all the other eigenvalues approach zero. In the limiting case of the independent-
particle model two eigenvalues become equal to 1, and the occupation numbers of the other
correlated geminals vanish.

The other 2s (s — 1) natural spin geminals are simple antisymmetrized products of natural
spin orbitals and their occupation numbers are given by

wis = L N2 . (A 14)

Because of the even degeneracy of the #;, any ui; has a degeneracy divisible by 4 — just as
one finds for the APSG approximation.

By virtue of (A 12) and (A 13) and putting N2 ~ 16 we can now predict that if the APIG
approximation is valid for a 4-electron closed shell state the eigenvalues of the non-correlated
natural spin geminals ui; should be related to the occupation numbers of the natural spin
orbitals by one of the approximate formulas

Mig =~ 7}: Vi Vi (A 15)
Hij = %— Vi Vi (A 16)

Wiy =~ VY31 (A 17)
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where (A 15) holds if both y; and y; are weakly occupied, (A 16) if either y: or y; is weakly and
the other strongly occupied and (A 17) if both y: and y; are strongly occupied.

One may mention that for CoLEMAN’s extreme type wave functions [9, 10] (A 13) and
(A 16) hold generally, but the Be ground state is anyway far from being describable by a wave
function of that type.
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